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Abstract:

This study reviews definite numerical integration methods and provides an analytical comparison of different
techniques used to compute integrals in the fields of applied mathematics and engineering. The primary goal of
the research is to assess the efficiency and accuracy of each method in calculating definite integrals, with a focus
on performance effectiveness when dealing with complex functions. A range of common methods, such as the
trapezoidal rule, Romberg method, and Simpson's rule, were analyzed. The paper presents the results of numerical
experiments conducted on a set of practical examples, with a detailed discussion of the challenges each method
faces and its suitability for various applications. In conclusion, recommendations are provided for selecting the
most appropriate method based on the required accuracy level and available computational resource.

Keywords: Numerical methods, integration, Numerical integration, Trapezoidal rule, Simpson's1\3 rule, Romberg
method.
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Introduction:

Integration is considered one of the fundamental pillars of calculus, with its primary role being the calculation of
accumulated quantities such as areas, volumes, displacements, and other physical or mathematical variables that
change continuously. Integration is classified into two main types: indefinite integration, also known as the
antiderivative, which represents the inverse process of differentiation; and definite integration, which is computed
by substituting the bounds of the interval into the antiderivative. Burden, RL, Fairs, JD in [1]

Geometrically, definite integration in the coordinate plane represents the area enclosed between the function’s
curve and the x-axis. This enables its application in determining areas, as well as in broader uses such as calculating
volumes and other quantities resulting from the successive summation of infinitesimally small elements. However,
many integrals cannot be solved using traditional analytical methods. Therefore, alternative approaches known as
numerical integration methods have been developed to approximate integral values in cases where analytical
solutions are not feasible. Jonh H, Mathew in [4]

Numerical analysis is a branch of applied mathematics concerned with the development and application of
numerical methods to obtain approximate solutions for mathematical problems that are difficult or impossible to
solve analytically. Since these methods rely on approximation, the resulting solutions are inherently approximate,
which leads to the emergence of what is known as numerical error. It is essential to study and analyze this error to
assess the accuracy and acceptability of the approximate solution, as the difference between the exact and
approximate solutions serves as an indicator of the quality of the numerical method employed. Gerry Sozio in [2]
Numerical Integration is a branch of numerical analysis concerned with approximating the value of a definite
integral for a given function when an analytical (explicit) solution is not feasible. This type of integration is used
in cases where the function cannot be integrated symbolically or when it is given only through discrete numerical
data. Gordon KS in [3]
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This is accomplished by dividing the interval over which the integration is to be performed into small subintervals
and estimating the area under the curve using numerical methods such as the Trapezoidal Rule, Simpson’s Rule,
or Gaussian Quadrature. Wu and Smolinski, in [9].

This paper aims to compare the Trapezoidal Rule and Simpson’s Rule, both of which belong to the closed Newton-
Cotes formulas, in addition to the Romberg integration method, which is derived from the Trapezoidal Rule. The
comparison is conducted by applying these methods to a variety of definite integrals, with a focus on analyzing
the results and examining the factors that influence the accuracy of the numerical outcomes.

Definition:

The process of determining the area under a curve represented by a function on a graph is known as definite
integration. In this process:

I=[f(x)dx,b>a. (1)

¥ [ ff(x)dx fix)

bs b X

o f(x) represents the integrand (the function to be integrated).
e aisthe lower limit of integration.
e bisthe upper limit of integration.

Figure 1: the Definite Integral.

The result of the definite integral gives the total accumulated value (such as area) of the function f(x) over the
interval [a, b]

Definition:

In numerical analysis, error is defined as the difference between the exact (true) value and the approximate value
obtained using numerical methods. The sources of error can be attributed to several factors, including: inaccuracies
in the input data, approximation inherent in numerical methods, truncation errors, computer-related errors (such
as floating-point representation), and human error.[8]

Errors are typically quantified using three main approaches:
1. Absolute Error: The absolute difference between the true value and the approximate value.
2. Relative Error: The ratio of the absolute error to the exact value.
3. Percentage Error: The relative error multiplied by 100 to express it as a percentage.
Trapezoidal Rule Method:

The Trapezoidal Rule is a widely used numerical method for approximating the value of a definite integral. It
works by approximating the curve of the function over the interval [a, b] with a straight line connecting the
endpoints, and then computing the area under this line as an estimate of the area under the curve.[7]

The basic formula for the Trapezoidal Rule to approximate the integral of a function f(x) over the interval [a, b]
is:

/= fabf(x)dx
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In the context of numerical integration, the interval [a, b] is divided into n subintervals of equal length. The length
of each subinterval, commonly referred to as the step size h, is calculated using the following formula:

b —a
h =

n

Figure 2 illustrates how this partitioning is carried out, where the area under the curve is divided into n segments.
Each segment resembles the shape of a trapezoid, and its area can be calculated using the trapezoidal rule.

1
A= 5(3’1 +¥2).h

}.
v—f(x)
| % o
]l. ‘Az A"j—\‘ L ":n‘l
’ ‘.\} ".‘\: \-J '
Lh '. ‘ }
i \:-;{1 ! x—=h "

Figure 2: Partition of the Definite Integral into Trapezoidal Segments Using the Trapezoidal Rule.

To estimate the total area enclosed under the curve and between the two lines x = a,x = b , we sum the areas of
all the individual segments Az , Az ,....... , An as follows.

f:f(x)dx = Total Area = A;+A,+Az;+A, + ..+ 4, .. (2)
h h h h
Ay =S (452,42 =5 (¥, +¥3), 43 = S (y3 + Ya)s o Ap = 5 (Y + Ynaa) - (3)
b h h h h
fa f(x)dx =E()’1 +¥2) +;()’2 +¥3) +E(Y3 +ya) + "'+E()’n +Ynt1) - (4)

b
[[f) dx =hGyi+ v+ Y5+t by Ynan)  nlS)

The accuracy of the integral value depends on the number of segments used to divide the area under the curve. As
the number of segments n increases, the accuracy of the integral improves. Therefore, n can be doubled after each
integration step several times until the difference between the most recent result and the previous one becomes
very small.[3]

Simpson's Rule Method:

Simpson’s Rule is a numerical method used to approximate the definite integral of a function. It is more accurate
than the rectangle and trapezoidal methods, especially when the function is smooth.

To approximate the integral of a function f(x) over the interval [a, b] using the Simple Simpson’s Rule (where
the interval is divided into 2 equal parts):[7]

a +b

e de =Z2{f(@ +2f D) + f(B)] ... (6)
Notes:
e  The number n must be even when using the composite form of Simpson’s Rule.
e Simpson’s Rule gives very accurate results for functions of degree three or lower.

e [t is commonly used in numerical analysis and scientific computing to estimate integrals that are difficult
to solve analytically.[1]
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Simpson's 1/3 Rule Method

Simpson’s 1/3 Rule is the most common form of Simpson’s Rule. It is used to approximate definite integrals by
fitting parabolic segments (instead of rectangles or trapezoids) under the curve.[8]

To approximate the integral:

b
Jo f(x)dx
We divide the interval [a, b] into an even number of subintervals n, and comput

b —a
h =

n

The simplest derivation of Simpson's 1/3 rule is done using Newton's forward difference formula.

f(x) =y +a-A3’o+$AZ% +WA3}’0+"' ~~~~~ @)
Where @ = ==2, h is the step size and it is constant,
Ayo =y1— Yo

A%yo =y, = 21 + Yo
A%yo = y3—3y, + 3y1 — ¥o
-1
f;;zf(x)dx = f;:)z [yo + a. Ay, + %Azyo] dx ... (8)
Thus, after integration and simplification, I obtain:

[2fedx =2y +4n+y] ©)

h
f;;“f(x)dx =3 o +4y, +2y, +4y,+y,] (10)

Xn
h h h
f f(x)dx = §[)’o + 4y; +y,] +§[)’2 +4y; + yu] + o+ §[)’n—2 +4yn_1 + Vul

X0
h - -
11/3 = E[YO + 4Z?=3ddyi + 22?=e217enyi + yn] ------- (11)
Simpson's 3/8 Rule Method

If the number of subintervals is odd, it is preferable to use Simpson's 3/8 rule. In this method, the function f(x) is
approximated using a cubic (third-degree) polynomial. The area under the curve over three subintervals can be
calculated similarly to the derivation of Simpson's 1/3 rule, by applying Newton’s forward difference formula up
to the fourth difference and then integrating from xo to x3.[7]

X2 X2
a(a—1 ala —1)(a—2

ff(x)dx = f [y0+a.Ayo+%Azy0+ *Aﬁlo dx.(12)

X0 X0 ' '

Ayo =y1 = Yo

Az}’o =Y, = 2y1+ Y
Nyy = y3—-3y, +3y1 — Yo

After performing the integration and simplification, | obtain the following result.

3h
I3/ = 5 [¥o+3y; + 3y2 +ys] ...(13)
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Example:
Evaluate the definite integral fol x* dx
using the following numerical methods:
1. The Trapezoidal Rule
2. Simpson’s 1/3 Rule
3. Simpson’s 3/8 Rule

Divide the interval [0, 1] into n= 6 equal subintervals, and compare the numerical results with the exact value.
Calculate the relative error for each method.

The exact value of integral is:

y=x*;x,=x,+h

Xy = X + Zh
X 0 1/6 2/6 3/6 4/6 5/6 1
y =x* 0 0.00077 0.01234 0.06251 0.1975 0.482253 1

Trapezoidal Rule Method:

1

1
I=h [EYO+J’1+J’2 tYstYatys + 5 Ve

11 1
=2 [E (0) +0.00077 + 0.01234 + 0.06251 + 0.1975 + 0482253 + > (1)

I =0.20922

Absolute Error= |Exact — Approximate| =|0.2 — 0.20922 | =0.00922

Exact—Approximate_0.00922
Exact 0.2

Relative Error = = 0.0461

Simpson's 1/3 Rule Method

h
Lys = §[YU + 4y, + 2y, + 4y3+2y,+4ys + Vel

1/6
Iz = % [0 + 4(0.00077) + 2(0.01234) + 4(0.06251) + 2(0.1975) + 4(0.482253) + 1]

I3 = 0.20010

Absolute Error= |Exact — Approximate| =|0.2 — 0.20010 | =0.0001

Exact—Approximate_0.0001
Exact 0.2

= 0.0005

Relative Error =
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Simpson's 3/8 Rule Method
3h

I35 = ?[(J/O + 3y, + 3y, + ¥3)+ (3 + 3y4+3ys + y6)]
3h

I35 = ?[Yﬂ + 3y1 + 3y, + 2y3+3y,+3ys + Vel

1
Isjs = 7z [0 +3(0.00077) + 3(0.01234) + 2(0.06251) + 3(0.1975) + 3(0.482253) + 1]

I35 = 0.20022

Absolute Error= |Exact — Approximate| =[0.2 — 0.20022 | =0.00022

Exact—Approximate_0.00022
Exact 0.2

= 0.0011

Relative Error =

Analysis of Results:
From the results, it is evident that:

Simpson’s 1/3 Rule provided a highly accurate approximation of the integral, with a very small relative error.
This is due to the fact that the rule approximates the function using quadratic (parabolic) segments, making it
particularly effective for smooth functions.

Simpson’s 3/8 Rule also yielded a high degree of accuracy, though slightly less precise than Simpson’s 1/3 in this
case, despite n=6n = 6n=6 being an exact multiple of 3. This slight difference may be attributed to the nature of
the function, as cubic interpolation (used in Simpson’s 3/8 Rule) does not always outperform quadratic
interpolation, especially with a relatively small number of intervals.

The Trapezoidal Rule produced a reasonable approximation but was the least accurate among the tested methods.
This outcome is expected, as the trapezoidal rule relies on linear interpolation, which cannot fully capture the
curvature of smooth nonlinear functions.

Romberg Integration Method

Romberg integration is a numerical technique designed to approximate definite integrals with high accuracy by
systematically refining estimates obtained from the trapezoidal rule. The method leverages Richardson
extrapolation to accelerate convergence and reduce the error associated with numerical approximation. It begins
with the application of the trapezoidal rule over successively halved subintervals, producing increasingly accurate
estimates of the integral. These estimates are then organized into a Romberg table, where each successive column
refines the previous one using the extrapolation formula:[5]

YR - R

R}, = T — . (14)
i=124816
j=123, ..
R,
R: R}
Ry R R:

Rs Ry} R: RS
Ris R}e R%e R%s Ri‘s
R3; R%z R%z Rgz R§2 R35,2

Ré.i represents the Romberg estimate at the i-th row and j-th column of the table. The method is particularly
effective when the integrand is smooth and continuous, often yielding highly accurate results with relatively few
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function evaluations. As such, Romberg integration is widely used in scientific computing and engineering
applications where precision is critical.[1]

Example:
1_Evaluate the definite integral f; xlnx dx

using the following numerical methods:
1. The Trapezoidal Rule
2. Simpson’s 1/3 Rule
3. Simpson’s 3/8 Rule
4. Romberg method, ati = 1,2

Divide the interval [0, 4] into n= 4 equal subintervals, and compare the numerical results with the exact value.
Calculate the relative error for each method.

The exact value of integral is:

4
2 2

x x
fxln(x) dx = 7lnx ~ 7= [8In4 — 4] = 7.09035

y=xlnx;x; =x9+h,x, =x¢+2h, ... ,x, = xy + nh

X 0 1 2 3 4

y =xlnx 0 0 1.38694 3.29583 5.54517

Trapezoidal Rule Method:

1 1
I=h SYotyity2 + s +5ys

I = 7.45535

Absolute Error= |Exact — Approximate| =|7.09035 — 7.45535 | =0.365

Exact—Approximate__ 0.365
Exact 7.09035

Relative Error = = 0.05147

Simpson's 1/3 Rule Method

h
Ly = §[Y0 + 4y, + 2y, + 4y3+y,]
I; = 7.16745

Absolute Error= |Exact — Approximate| =|7.09035 — 7.16745 | =0.0771

Exact—Approximate_ 0.0771
Exact 7.09035

= 0.01087

Relative Error =

Simpson's 3/8 Rule Method

3h
I3 = 8 [(Vo + 3y1 + 3y, + 2y5+4]

13/8 = 6.11618
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Absolute Error= |Exact — Approximate| =|7.09035 — 6.11618| =0.97417

Exact—Approximate_0.97417
Exact 7.09035

= 0.13739

Relative Error =

Romberg method, ati = 1,2

To find j, compare the values of i with the values of j .
i=124816

j =1,2,3,4,5.1stops at 2 and from there the value of j is 2.

jpi—-1 _ pi-1
j YRy — R

S|
2 p1 1

R;

R, R}

R, R} R?

To find R, I used the trapezoidal method.

Ri=(yo+y)h,h=""2=2"2y

2 n 1

Ri=300+3)5y =xIn(x), % =0, x = h+x = 4

4
Ry =5 (0 +5.545) = 11.090

b-a 4-0
n 2

h

R, =;()’0 + 2y, +y,),h=
2

R, = E(O +1.386 + 5.545) = 8.317
h

Ry = E(YO +2(y; + ¥, +¥3) +ya) = 7.455

When i=1 and j=1 in Romberg method:

_ 4R} — R} 4(8.317) — 11.090

R} = = =7.
2 -1 3 393
When i=2 , j=1.
4R — RY
Ri=——2=71
2 -1 7.168
Wheni=2,j=2.
42 Ri — R%

The exact value of integral is:

4
2 2

fxln(x) dx = %lnx — % = [8In4 — 4] = 7.090

0
Error= |Exact — Approximate| =|7.090 — 7.153 | =0.063

Exact—Approximate_0.063
Exact 7.09

Relative Error = = 0.0088
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Analysis of Results:
From the results, it is evident that:
e Simpson’s 1/3 Rule provided very high accuracy.

o Romberg Integration delivered the most accurate result, as expected, due to its use of successive
refinement and Richardson extrapolation.

e The Trapezoidal Rule yielded a reasonable approximation, but with lower accuracy than the higher-
order methods.

¢ Simpson’s 3/8 Rule using n=4 was less accurate in this example, likely because n=4 is not a multiple of
3, which affects the optimal performance of this rule.

Conclusion:

Different numerical integration methods offer varying levels of accuracy depending on the nature of the function
and the number of subintervals used. The results demonstrate that higher-order polynomial approximation
methods, such as Simpson’s rules and Romberg integration, are generally more efficient and accurate, especially
when applied to smooth functions. Romberg stands out as the best choice when maximum precision is required,
while Simpson’s 1/3 Rule offers an excellent balance between accuracy and simplicity of implementation
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