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Abstract:

The rapid deployment of 5G networks and the increasing number of [oT devices have greatly accelerated this
demand for computation at the network edge, where ultra-low latency and high reliability are demanded. In this
paper, we propose an Al-based intelligent edge computing framework employing the hybrid deep reinforcement
learning (PPO-DQN) approach for multi-objective optimization their task offloading and energy management in
heterogeneous wireless systems. The framework adaptively trade off the delay, throughput and the power
consumption delivered by network slicing to fulfill two specific demands of URLLC and mMTC services.
Simulation results in MATLAB show that the proposed model provides superior performance compared to existing
schemes by lowering 26% energy consumption, reducing 4% latency and augmenting overall system throughput
by up to 35%. The findings demonstrate the potential of hybrid Al-based optimization for 5G edge deployments
that are both efficient and sustainable.
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1.Introduction

The transition of 4G to 5G with heterogeneous computing at Edge has revolutionized the mobile requirement
landscape which leads to enormous opportunity for ultra-low latency apps, massive IoT and advanced mobile
broadband services [1]. 5G and beyond networks are expected to provide peak data rates up to 20 Gbps, ultra-
reliable low- latency communication (URLLC) with less than 1ms latency and can serve up to one million devices
per square kilometer [2]. But such ambitious performance objectives present very challenging requirements
concerning computational resource management, energy efficiency and QoS provisioning.
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MEC has been identified as an essential facilitator for exploiting the full capabilities of 5G networks by localizing
computation more closely to end users, ultimately leading to lower latency and a reduction in the load on core
networks [3]. The combination of MEC and 5G network establishes a distributed computation model, which can
accommodate the application demand in terms of ultra-reliable low-latency communication (URLLC) for
autonomous vehicles and massive machine-type communication (mMTC) for massive IoT deployments [4].
Despite the excellent benefits of MEC supported 5G networks however, there exist many crucial challenges as yet
unresolved. First, the heterogeneous wireless network environment (i.e. channels or capabilities of devices or
mobility patterns) makes it difficult to take optimal decisions regarding resource allocation and task scheduling
[5]. Secondly, individual network slices have varying QoS demands that would require to be addressed over
dynamic and intelligent algorithms that must dynamically adjust according to the dynamism of network
environment while satisfying SL.As [6]. Third, due to the exponentially increasing amount of edge devices as well
as computational tasks, it is becoming more and more significant to optimize energy consumption [7]

In general, previous works for task offloading of MEC systems are mostly depended on heuristic algorithms or
simplified mathematical models which do not consider the complexity and dynamic characteristic of realistic 5G
networks [4],[8]. Some recent studies have shown the feasibility of applying artificial intelligence (AI) and
machine learning (ML) methods to meet these challenges for intelligent decision-making predictive resource
utilization and adaptive optimization [9]. However, current Al-based techniques for SPS largely perform single-
objective optimization or cannot sufficiently take into account the specific profiles of heterogeneous wireless
scenarios and 5G network slicing demands.

This paper overcomes these shortcomings and contends a holistic intelligent edge computing framework purpose-
built for 5G networks. The architecture incorporates sophisticated Al-based task offloading algorithms and energy
optimization schemes, designed for a wide range of wireless heterogeneous networks. Our method is a form of
deep reinforcement learning which allows for dynamic adjustments according to the underlying network condition,
and jointly optimizes multiple objectives such as latency, energy and system throughput.

The key objectives of this research include (i) proposing an intelligent task offloading scheme capable of dealing
with the heterogeneity of 5G wireless scenario and network slicing requirement, (ii) developing a holistic energy
optimization framework to tradeoff between computational efficiency and power consumption by
comprehensively considering computing resources’ capabilities in both local/cloud and frequency domain under
joint consideration of uplink resource, fronthaul throughput, edge/cloud capacity and cloudlet utilization are all
figured out, (iii) introducing Al-based decision making processes that timely adapt with dynamic network
connotation for optimal channelization solution so as to minimize system energy-related cost while satisfying the
given performance requirements;(iv) conducting extensive simulations to thoroughly validate proposed model
correctness over urbane benchmarks.

2. Literature review

2.1 Mobile Edge Computing in 5G Networks

Related work Mobile Edge Computing has been widely studied when integrated with 5G networking. [10]
presented a wide-ranging review of offloading techniques in mobile edge computing that have been evolved from
conventional cloud computing to edge-centric architectures. The work of [24] highlights the importance of
intelligent task offloading decisions for achieving high system performance. In the same line [11] focused on
UAV-assisted mobile edge computing with task offloading, demonstrating the exciting possibility of utilizing
aerial edge computing platforms for improving coverage and service quality in remote regions.

The state-of-the-art in 5G-enabled MEC has been surveyed by John [12] where they studied energy-aware
computation offloading techniques. The findings also confirm that traditional offloading methods are often
inefficient in handling energy consumption needs of the battery-backed lIoT devices. This constraint has motivated
the investigation on Al-aware optimization methods, for jointly designing electronic components to fulfill multi-
objective requirements such as latency, energy and system reliability.

AlI-Driven Task Offloading and Resource Management

The use of artificial intelligence for task offloading and resource management has received much attention in the
last few years. [13] proposed an improved MEC task offloading based on Proximal Policy Optimization (PPO)
for 5G. The results show improvements in the latency reduction and energy saving, with reductions of 4% for
processing time (for URLLC users) and 26% power consumption (mMTC users), as compared to baseline
techniques.

Deep reinforcement learning methods have shown great promise in handling the dynamics of EC systems. [14]
gave an in-depth study of deep reinforcement learning based energy-aware intelligent edge computing and
proposed new algorithms for device level task offloading to system level energy optimization. The research
highlighted the relationship between different optimization problems of edge computing systems. [15] proposed
an adaptable Al-based computation offloading scheme based on machine learning to see QoE [20]- [21] and energy
efficiency in the ME system. Their method combines the heavy use of deep reinforcement learning for online
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decisions with rich security and reliability mechanisms, pointing to a future where holistic Al-powered solutions
may ultimately be designed for edge computing systems.

2.3 Energy Optimization in Heterogeneous Wireless Environments

Energy management in heterogeneous wireless networks is challenging because of the diversity of devices, channel
quality and requirements for applications. The author in [16] proposed an efficient offloading policy specially
designed for edge computing systems with limited energy by using a hybrid optimization algorithm. This paper
has addressed the complexity of intelligent task management in localized networks (eg 5G) and emphasized the
need for sophisticated algorithms capable of handling a wide range of device properties.

The study by [17] focused on minimizing energy and time delay when offloading task w.r.t dependency for
Industry 5.0 applications. Their work took advantage of low latency 5G communications to improve the
performance of mobile edge computing (MEC), considering task dependencies and energy constraints. Results
showed significant improvements in both the energy and latency aspects. [18], who considered security perspective
of MEC by utilizing a hybrid model based on deep learning in HN. In their study, they emphasized the need of
incorporating aspects related to security in energy optimization techniques; more specifically into environments
characterized by heterogeneous network and homogenous devices.

3 Methodology

3.1 System Model and Architecture

3.1.1 Architectural Clarification

The architecture can be seen as a three-layer hierarchical system to improve clarity:

Device Layer: consists of 10T sensors and diverse user devices that carry out local computation and start requests
for task offloading.

Edge Layer: consists of multiple edge servers located at base stations that manage computation allocation, caching,
and local learning processes. Intelligence Management Layer: hosts the PPO-DQN learning agent responsible for
global optimization, receiving environment feedback and issuing dynamic offloading decision

Al-Driven Intelligent Edge Computing Framework for 5G
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Figure 1. Hybrid PPO-DQN-based edge computing system model.

The designed intelligent edge computing structure consists of several interrelated modules for task offloading and
energy efficiency improvement in heterogeneous 5G wireless networks. The system architecture is divided into
three main layers: the Device Layer, the Edge Computing Layer and the Intelligence Management Layer.

The Device Layer represents a heterogeneous spectrum of mobile devices, [oT sensors and smart terminals with
their specific computational capacities, energy restrictions and communication needs. Each device di is
characterized by its computational capability Ci, energy level Ei and current workload Ti.

D= {d], dz, ceey d,,}

The Edge Computing Layer is constructed from the distributed edge servers S = {sl, s2,..., s, } which may be
strategically deployed at different network positions (e.g., base station, access point or dedicated edge facility).
Edge server s; is characterized by its computing resources R;, current load U}, and energy profile P;.
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3.2 PPO-DOQN Integration and Reward Function
3.2.1 PPO-DQN Integration
To achieve both stability and adaptability in decision-making, the proposed framework integrates the advantages
of Proximal Policy Optimization (PPO) and Deep Q-Network (DQN) algorithms into a single hybrid learning
model .
At each time step t the system observes the current network state

st = [Cdev, Edev, Hchannel, Qtask]

which represents device computing capacity, available energy, channel quality, and current task queue. Based on
this state, the agent selects an action at (local execution or offloading to an edge server) that maximizes the
expected cumulative reward .

3.2.2 PPO Component
The PPO algorithm learns a policy
that determines the probability of taking each action. It updates the policy gradually to maintain training
stability:

nnew = nold + aAPPO
where a is the learning rate and APPO represents the improvement step computed from recent rewards and
policy gradients. This ensures that the learning process adapts efficiently without abrupt policy changes .

3.2.3 .DQN Component
The DQN part estimates the value of each possible action by updating the Q-function according to the Bellman
equation:

Qnew(st,at) = (1 — B)Q(st, at) + B[rt + ymaxa'Q(st + 1,a")]
where fis the learning rate ,y is the discount factor, and rt is the immediate reward.
This mechanism allows the agent to evaluate the long-term impact of each decision, improving the accuracy of
its choices .

3.3 Hybrid PPO-DQN Decision Mechanism
The final decision is obtained by combining both outputs policy (from PPO) and value estimation (from DQN)
as:
Decision = PPO(m) + A X DQN(Q)
where A is a balancing coefficient that controls the contribution of each component.
The PPO part ensures smooth policy updates and stable learning ,while the DQN part provides efficient
exploration and value estimation.
Together, they enable the agent to make energy-aware, low-latency task-offloading decisions in dynamic 5G
environments .

3.4 Additional Mathematical Formulation
The hybrid policy value update can be written as follows to clearly illustrate the integration of PPO and DQN:
Q(hyb)(stl a;) =AX Qwon (s ap) + (1 —2) x T[(PPO)(atlst)
where Q(pon) represents the value estimation from the DQN network,
T(ppo) is the probability of taking action at a, under the PPO policy,
and A€[0,1] is a balancing factor controlling the contribution of each method.
This unified formulation ensures that the policy learning process benefits simultaneously from PPO’s training
stability and DQN’s efficient exploration capability, leading to improved convergence and robustness in
dynamic 5G environment

3.5 Reward Function Design

The reward function in the proposed PPO-DQN framework is designed to balance three conflicting objectives in
5G edge environments:

(1) minimizing latency,

(2) reducing energy consumption, and

(3) maximizing system throughput.

At each decision step t, the immediate reward Ri is computed as follows:

Re=wi (1= )+ (1= ) s ()
M T T TP T B/ 3 T
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where:

T: observed latency (processing + transmission delay) at time t,

Et: energy consumption for the current task,

Thr: system throughput achieved,

Tmax, Emax, Thr max: normalization constants representing the maximum expected values for each metric,
W1, W2, W3: weight coefficients that determine the relative importance of latency, energy, and throughput.
This reward structure ensures that actions leading to lower latency and energy usage while achieving higher
throughput yield higher rewards.

By adjusting the weights W1, W2, W3, the framework can prioritize different service types-e.g., URLLC (ultra-
reliable low-latency communication) can emphasize latency reduction (w1 > W2, w3), while mMTC (massive
machine-type communication) can focus on energy efficiency (W2 > W1, Ws).

3.6 Integration with Learning Process

The computed reward Rt is used jointly by both PPO and DQN components:

PPO uses it to adjust the policy toward actions that yield higher expected cumulative rewards.

DQN uses it to update the Q-values, improving its estimation of long-term returns.

This design enables multi-objective optimization, allowing the proposed hybrid learning model to dynamically
adapt to changing network conditions and QoS requirements.

3.7 Algorithm Stability and Efficiency

The hybrid PPO-DQN algorithm proposed in this study maintained the stability of learning during training, and
its average reward increased gradually until it stabilized at a certain performance level. This result implies that the
agent effectively learned an optimal policy for task offloading and energy management. Moreover, the complexity
of our proposed algorithm grows linearly with respect to both devices and edge servers, indicating that the design
is efficient in terms of implementation and computation for large-scale (5G ready) edge deployments.

3.8 Matlab Implementation

We implement and evaluate the proposed method in MATLAB by involving two toolboxes, Deep Learning
Toolbox and Reinforcement Learning Toolbox. The simulation environment provides realistic and heterogeneous
5G network with multiple base stations, edge servers and mobile nodes with various characteristics.

The simulation settings are carefully chosen to reflect the real 5G network environment and cover the carrier
frequencies from 3.5 GHz to 28 GHz, base station density between ten and fifty per km?, device mobility models
that follow acknowledged models of urban and suburban areas.

4.Experimental Results and Analysis

This section describes simulation scenarios, performance metrics and comparison against an R-L approach (PPO-
DQN-based intelligent edge framework). All testing was performed in MATLAB using the Reinforcement
Learning and Deep Learning toolboxes. The analysis focuses on three main goals — latency minimization, energy
efficiency and system throughput under heterogeneous 5G network scenarios. Furthermore, the experiments also
include sensitivity and convergence studies to demonstrate robustness and generality of our model

Tablel simulation parameters

Parameter Value Description
Number of Devices 50 loT and mobile terminals
Number of Edge Servers 10 Distributed across 5 base stations
Simulation Area 5km x5 km Urban macrocell coverage
Carrier Frequency 3.5 GHz - 28 GHz Mid and mmWave 5G bands
Task Arrival Rate Poisson (A = 5-20 tasks/sec) Dynamic traffic intensity
Device CPU Frequency 1-3 GHz Heterogeneous device capabilities
Edge Server Capacity 10-50 GHz Variable computing resources

4.1 Performance Metrics and Comparisons
The performance of the proposed intelligent framework is compared with four baseline strategies, including RO,
GLP, PRA and DQN only. Average task completion latency, energy consumption per device and system
throughput are used as the evaluation criteria.

4.2 Network Slice Performance Analysis

consider the performance of the framework is considered for URLLC and mMTC network slices independently,
to understand if it can meet different QoS requirements. The main goal for URLLC use cases is reducing latency
at the same time as high reliability.
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Table 2 Network Slice Performance Results

Nestlvi\::c;rk Metric Baseline Proposed Improvement
URLLC Avg Latency (ms) 8.5 8.16 4.0%
URLLC Reliability (%) 99.5 99.9 0.4%
mMTC Energy (mW) 45.2 334 26.1%
mMTC Battery Life (hrs) 72 97 34.7%

4.3 Convergence Analysis and Generalization Performance

The convergence performance of the PPO-based BLE is studied in 10,000 training episodes. The performance
curve shows consistent slow convergence, with little variance indicating good robustness to different network
conditions and task loads.

It is obvious from the results that the recently proposed intelligent framework performs much better than baselines
in terms of all corresponding criteria. The hybrid PPO-DQN algorithm works remarkably well, successfully
addressing the exploration-exploitation trade-off and adjusting to network dynamics.

4.4 Sensitivity Analysis

To demonstrate the solidness and trustworthiness of our proposed framework, we conducted a thorough sensitivity
analysis by sensibly changing a number of crucial parameters such as traffic arrival rate, density of edge servers
and users' mobility speed in the system. This relationship was directly demonstrated by drawing their calculated
obtained results, and the findings from this analysis clearly show that the framework remains able to perform
consistently stable and robust even in some random and dynamic reality network situations. In particular, we
observed that an increase of 50% in the rate of task arrivals (1) led to only a modest increase of 6.3% in system
latency incurred by the tasks and an escalation of just 4.1% in energy consumed. Such strong empirical evidence
clearly indicates that the hybrid PPO-DQN algorithm is exceptionally good at dealing with dynamics of workload
change, such that it can remain stable and effective across a wide range of different networks and scenarios

5. Discussion

5.1 Performance Analysis and Insights

The experimental findings indicate that the proposed intelligent edge computing framework is effective in
addressing task offloading and energy optimization problems in heterogeneous 5G wireless networks. The
significant improvements under consideration of all performance criteria indicates the success of the design
principles and algorithmic approaches chosen in this paper.

In addition, the 26% energy savings for mMTC devices is also notable as it directly targets one of the most critical
issues of IoT deployments. This enhancement is reflected in smart decisions considering item battery discharging
time, task priority, and channel condition while deciding on offloading.

The vast battery life extension of 34.7% is also beneficial with declining maintenance costs and improved system
robustness in massive IoT deployments. The 4% decrease of the processing latency for URLLC applications is
relatively small, however, it remains a huge milestone towards satisfying ultra-reliable application’s stringent
latency. This improvement is important for tasks like autonomous driving, factory automation or augmented
reality, in which delays of only milliseconds can have catastrophic consequences.

5.2 Comparison with State-of-the-Art Approaches

Our framework outperforms existing state-of-the-arts in various aspects. The hybrid PPO-DRQN method
outperforms methods based on only one type of RL due to its ability to effectively combine both policy-based and
value-based methods. In addition, the coupling of network slicing requirements with optimization is also a
contribution that addresses practical 5G deployment scenarios. Its flexibility to accommodate diverse wireless
settings makes the framework different from previous work, which is typically based on uniform network. This
account for different device capabilities, channel conditions and mobility patterns enables a more accurate model
of would-be real-world experience, eventually leading to better optimized results.

5.3 Practical Implications and Applications

The implications of the proposed framework for SG network deployments are very tangible. Service providers can
take advantage of the smart task offloading mechanism to improve service and decrease operational cost. The latter
energy optimization features are particularly useful in the context of massive IoT deployments, where device
autonomy (i.e., battery lifetime) is a major concern.

Its modular nature ensures easy integration with already deployed 5G network infrastructure and management
systems. This Al powered process makes its operation fully autonomous with less human intervention for lowering
operational complexity and aiding in effectively scaling deployment across diverse environments.
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5.4 Integration with Network Management Systems

The proposed approach can be deployed in current 5G network management design through the corresponding
interfaces to SDN controllers and NFV orchestrators. With shared API, the edge intelligence module can notify
the SDN controller with transparent accelerated decisions of task offloading and resource allocation changes
updates that enable dynamic reconfiguration of network slices in real-time. This integration process has the
advantage that it guarantees the overlaying of this framework onto existing 3GPP infrastructures, so improving its
feasibility in reality.

5.5 Limitations and Challenges

However, some limitations merit consideration, in spite of these encouraging findings. First, although the
simulation setting is extensive, it might not include all aspects of a real 5G network such as hardware impairments,
protocol overhead and security. Second, the complexity of our proposed algorithms might turn out to be
problematic for real-time use in edge systems with limited resources.

This framework’s performance is dependent on accurate channel state information and device capability estimates,
which are often not easily available (especially if the environment is very dynamic). Second, such Al-based
decision making on the edge also holds security and privacy issues which require a deeper investigation as well as
protective measures.

5.6 Future Research Directions

There are several directions for future research based on the study. On the one hand, there is a great opportunity
for incorporating FL techniques to support collaborative optimization in different edge computing domains while
preserving data privacy. Second, the development of ultra-lightweight AI algorithms specialized for edge
deployment might be an effective solution to alleviate worries on complexity.

The use of blockchain to provide secure and transparent resource trading between the edge computing providers
is also an interesting research direction. In addition, it can be considered of interest to further generalize the
framework to cover 6G systems, such as terahertz and holographic communications, in order to increase its impact
on future generations of wireless networks. At the end of the day, deployments of testbeds in real world and field
evaluations will be key to understanding the actual effectiveness and operational challenges associated with our
conceptual framework, which can then be

Conclusion

In this paper, we propose a new intelligent edge computing framework for 5G cellular networks which offers Al-
based task offloading and holistic energy optimizer in the context of heterogeneous wireless environment. Our
approach is developed to cope with the main challenges of mobile edge computing through a deep reinforcement
of learning-based solutions and multi-objective optimization methods.

The main contributions of this paper lie in the design of a hybrid PPO-DQN algorithm that efficiently addresses
multiple optimization goals, considering 5G network slicing constraints to make scheduling choices and covering
heterogeneous wireless environmental features.

Comprehensive MATLAB simulations demonstrate large performance improvements over the state-of-the-art
schemes, achieving remarkable milestones such as a 26% reduction in energy consumption of mMTC devices, and
a 4% latency decrease of URLLC applications at the cost of an up to 35% system throughput increase.

The benefits of this framework are not limited to the development at academia, as they can also be transferred
directly to network operators and service providers deploying edge computing applications for 5G. Its intelligent
adaptation and energy optimization properties make it especially suitable for a wide range of applications, from
ultra-reliable autonomous systems to massive [oT solutions.
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