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Abstract:  

The rapid deployment of 5G networks and the increasing number of IoT devices have greatly accelerated this 

demand for computation at the network edge, where ultra-low latency and high reliability are demanded. In this 

paper, we propose an AI-based intelligent edge computing framework employing the hybrid deep reinforcement 

learning (PPO–DQN) approach for multi-objective optimization their task offloading and energy management in 

heterogeneous wireless systems. The framework adaptively trade off the delay, throughput and the power 

consumption delivered by network slicing to fulfill two specific demands of URLLC and mMTC services. 

Simulation results in MATLAB show that the proposed model provides superior performance compared to existing 

schemes by lowering 26% energy consumption, reducing 4% latency and augmenting overall system throughput 

by up to 35%. The findings demonstrate the potential of hybrid AI-based optimization for 5G edge deployments 

that are both efficient and sustainable.  

Keywords: 5G, task offloading, energy optimization, reinforcement learning, edge computing. 

  :الملخص

والعدد المتزايد من أجهزة إنترنت الأشياء إلى تسريع الطلب على الحوسبة   5Gدى الانتشار السريع لشبكات الجيل الخامس أ

لشبكة بشكل كبير، حيث يتطلب الأمر زمن وصول منخفضًا للغاية وموثوقية عالية. هذه الورقة، نقترح إطار عمل ل  الطرفية

( لتحسين PPO-DQNالعميق الهجين )  للحوسبة الطرفية الذكية قائمًا على الذكاء الاصطناعي، يستخدم نهج التعلم التعزيزي

متعدد الأهداف، وتفريغ المهام وإدارة الطاقة في الأنظمة اللاسلكية غير المتجانسة. يوازن الإطار بشكل تكيفي بين التأخير 

لخدمات   محددين  مطلبين  لتلبية  الشبكة  تقسيم  عن  الناتج  الطاقة  واستهلاك  نتائج  mMTCو  URLLCوالإنتاجية  تظُهر   .

أن النموذج المقترح يوفر أداءً متفوقًا مقارنةً بالمخططات الحالية، من خلال خفض استهلاك الطاقة    MATLABاة في  المحاك

%. تظُهر النتائج  35النظام بنسبة تصل إلى    بياناتمعدل نقل  %، وزيادة إجمالي  4%، وتقليل زمن الوصول بنسبة  26بنسبة  

جيل الخامس التي تتسم بالكفاءة  لل  الشبكات الطرفية  انتشارلاصطناعي لعمليات  إمكانات التحسين الهجين القائم على الذكاء ا

 والاستدامة.

  .الجيل الخامس، تفريغ المهام، تحسين الطاقة، التعلم التعزيزي، الحوسبة الطرفية: الكلمات المفتاحية

1.Introduction 

The transition of 4G to 5G with heterogeneous computing at Edge has revolutionized the mobile requirement 

landscape which leads to enormous opportunity for ultra-low latency apps, massive IoT and advanced mobile 

broadband services [1]. 5G and beyond networks are expected to provide peak data rates up to 20 Gbps, ultra-

reliable low- latency communication (URLLC) with less than 1ms latency and can serve up to one million devices 

per square kilometer [2]. But such ambitious performance objectives present very challenging requirements 

concerning computational resource management, energy efficiency and QoS provisioning. 
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MEC has been identified as an essential facilitator for exploiting the full capabilities of 5G networks by localizing 

computation more closely to end users, ultimately leading to lower latency and a reduction in the load on core 

networks [3]. The combination of MEC and 5G network establishes a distributed computation model, which can 

accommodate the application demand in terms of ultra-reliable low-latency communication (URLLC) for 

autonomous vehicles and massive machine-type communication (mMTC) for massive IoT deployments [4]. 

Despite the excellent benefits of MEC supported 5G networks however, there exist many crucial challenges as yet 

unresolved. First, the heterogeneous wireless network environment (i.e. channels or capabilities of devices or 

mobility patterns) makes it difficult to take optimal decisions regarding resource allocation and task scheduling 

[5]. Secondly, individual network slices have varying QoS demands that would require to be addressed over 

dynamic and intelligent algorithms that must dynamically adjust according to the dynamism of network 

environment while satisfying SLAs [6]. Third, due to the exponentially increasing amount of edge devices as well 

as computational tasks, it is becoming more and more significant to optimize energy consumption [7] 

In general, previous works for task offloading of MEC systems are mostly depended on heuristic algorithms or 

simplified mathematical models which do not consider the complexity and dynamic characteristic of realistic 5G 

networks [4],[8]. Some recent studies have shown the feasibility of applying artificial intelligence (AI) and 

machine learning (ML) methods to meet these challenges for intelligent decision-making predictive resource 

utilization and adaptive optimization [9]. However, current AI-based techniques for SPS largely perform single-

objective optimization or cannot sufficiently take into account the specific profiles of heterogeneous wireless 

scenarios and 5G network slicing demands. 

This paper overcomes these shortcomings and contends a holistic intelligent edge computing framework purpose-

built for 5G networks. The architecture incorporates sophisticated AI-based task offloading algorithms and energy 

optimization schemes, designed for a wide range of wireless heterogeneous networks. Our method is a form of 

deep reinforcement learning which allows for dynamic adjustments according to the underlying network condition, 

and jointly optimizes multiple objectives such as latency, energy and system throughput. 

The key objectives of this research include (i) proposing an intelligent task offloading scheme capable of dealing 

with the heterogeneity of 5G wireless scenario and network slicing requirement, (ii) developing a holistic energy 

optimization framework to tradeoff between computational efficiency and power consumption by 

comprehensively considering computing resources’ capabilities in both local/cloud and frequency domain under 

joint consideration of uplink resource, fronthaul throughput, edge/cloud capacity and cloudlet utilization are all 

figured out, (iii) introducing AI-based decision making processes that timely adapt with dynamic network 

connotation for optimal channelization solution so as to minimize system energy-related cost while satisfying the 

given performance requirements;(iv) conducting extensive simulations to thoroughly validate proposed model 

correctness over urbane benchmarks. 

2. Literature review 

2.1 Mobile Edge Computing in 5G Networks 

Related work Mobile Edge Computing has been widely studied when integrated with 5G networking. [10] 

presented a wide-ranging review of offloading techniques in mobile edge computing that have been evolved from 

conventional cloud computing to edge-centric architectures. The work of [24] highlights the importance of 

intelligent task offloading decisions for achieving high system performance. In the same line [11] focused on 

UAV-assisted mobile edge computing with task offloading, demonstrating the exciting possibility of utilizing 

aerial edge computing platforms for improving coverage and service quality in remote regions. 

The state-of-the-art in 5G-enabled MEC has been surveyed by John [12] where they studied energy-aware 

computation offloading techniques. The findings also confirm that traditional offloading methods are often 

inefficient in handling energy consumption needs of the battery-backed IoT devices. This constraint has motivated 

the investigation on AI-aware optimization methods, for jointly designing electronic components to fulfill multi-

objective requirements such as latency, energy and system reliability. 

 

AI-Driven Task Offloading and Resource Management 

The use of artificial intelligence for task offloading and resource management has received much attention in the 

last few years. [13] proposed an improved MEC task offloading based on Proximal Policy Optimization (PPO) 

for 5G. The results show improvements in the latency reduction and energy saving, with reductions of 4% for 

processing time (for URLLC users) and 26% power consumption (mMTC users), as compared to baseline 

techniques. 

Deep reinforcement learning methods have shown great promise in handling the dynamics of EC systems. [14] 

gave an in-depth study of deep reinforcement learning based energy-aware intelligent edge computing and 

proposed new algorithms for device level task offloading to system level energy optimization. The research 

highlighted the relationship between different optimization problems of edge computing systems. [15] proposed 

an adaptable AI-based computation offloading scheme based on machine learning to see QoE [20]- [21] and energy 

efficiency in the ME system. Their method combines the heavy use of deep reinforcement learning for online 
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decisions with rich security and reliability mechanisms, pointing to a future where holistic AI-powered solutions 

may ultimately be designed for edge computing systems. 

 

2.3 Energy Optimization in Heterogeneous Wireless Environments 

Energy management in heterogeneous wireless networks is challenging because of the diversity of devices, channel 

quality and requirements for applications. The author in [16] proposed an efficient offloading policy specially 

designed for edge computing systems with limited energy by using a hybrid optimization algorithm. This paper 

has addressed the complexity of intelligent task management in localized networks (eg 5G) and emphasized the 

need for sophisticated algorithms capable of handling a wide range of device properties. 

The study by [17] focused on minimizing energy and time delay when offloading task w.r.t dependency for 

Industry 5.0 applications. Their work took advantage of low latency 5G communications to improve the 

performance of mobile edge computing (MEC), considering task dependencies and energy constraints. Results 

showed significant improvements in both the energy and latency aspects. [18], who considered security perspective 

of MEC by utilizing a hybrid model based on deep learning in HN. In their study, they emphasized the need of 

incorporating aspects related to security in energy optimization techniques; more specifically into environments 

characterized by heterogeneous network and homogenous devices. 

 

3 Methodology  

3.1 System Model and Architecture 

3.1.1 Architectural Clarification 

The architecture can be seen as a three-layer hierarchical system to improve clarity:  

Device Layer: consists of IoT sensors and diverse user devices that carry out local computation and start requests 

for task offloading. 

Edge Layer: consists of multiple edge servers located at base stations that manage computation allocation, caching, 

and local learning processes. Intelligence Management Layer: hosts the PPO–DQN learning agent responsible for 

global optimization, receiving environment feedback and issuing dynamic offloading decision 

 
 

Figure 1. Hybrid PPO–DQN-based edge computing system model. 

 

The designed intelligent edge computing structure consists of several interrelated modules for task offloading and 

energy efficiency improvement in heterogeneous 5G wireless networks. The system architecture is divided into 

three main layers: the Device Layer, the Edge Computing Layer and the Intelligence Management Layer. 

The Device Layer represents a heterogeneous spectrum of mobile devices, IoT sensors and smart terminals with 

their specific computational capacities, energy restrictions and communication needs. Each device di is 

characterized by its computational capability Ci, energy level Ei and current workload Ti. 

D = {d1, d2, ..., dn} 

The Edge Computing Layer is constructed from the distributed edge servers S = {s1, s2,..., sm } which may be 

strategically deployed at different network positions (e.g., base station, access point or dedicated edge facility). 

Edge server sj is characterized by its computing resources Rj, current load Uj, and energy profile Pj. 
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3.2 PPO–DQN Integration and Reward Function  

3.2.1 PPO–DQN Integration 

To achieve both stability and adaptability in decision-making, the proposed framework integrates the advantages 

of Proximal Policy Optimization (PPO) and Deep Q-Network (DQN) algorithms into a single hybrid learning 

model .  

At each time step 𝑡 the system observes the current network state 

𝑠𝑡 = [𝐶𝑑𝑒𝑣, 𝐸𝑑𝑒𝑣, 𝐻𝑐ℎ𝑎𝑛𝑛𝑒𝑙, 𝑄𝑡𝑎𝑠𝑘] 
 

which represents device computing capacity, available energy, channel quality, and current task queue. Based on 

this state, the agent selects an action  𝑎𝑡 (local execution or offloading to an edge server) that maximizes the 

expected cumulative reward .  

3.2.2  PPO Component  

The PPO algorithm learns a policy 

that determines the probability of taking each action. It updates the policy gradually to maintain training 

stability : 

𝜋𝑛𝑒𝑤 = 𝜋𝑜𝑙𝑑 + 𝛼𝛥𝑃𝑃𝑂 

where 𝛼 is the learning rate and Δ𝑃𝑃𝑂 represents the improvement step computed from recent rewards and 

policy gradients. This ensures that the learning process adapts efficiently without abrupt policy changes .  

3.2.3 .DQN Component  

The DQN part estimates the value of each possible action by updating the Q-function according to the Bellman 

equation : 

 

𝑄𝑛𝑒𝑤(𝑠𝑡, 𝑎𝑡) = (1 − 𝛽)𝑄(𝑠𝑡, 𝑎𝑡) + 𝛽[𝑟𝑡 + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠𝑡 + 1, 𝑎′)] 
where 𝛽is the learning rate ,𝛾 is the discount factor, and 𝑟𝑡 is the immediate reward . 

This mechanism allows the agent to evaluate the long-term impact of each decision, improving the accuracy of 

its choices .  

3.3 Hybrid PPO-DQN Decision Mechanism  

The final decision is obtained by combining both outputs policy (from PPO) and value estimation (from DQN) 

as:    

    𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑃𝑃𝑂(𝜋) + 𝜆 × 𝐷𝑄𝑁(𝑄) 

where 𝜆 is a balancing coefficient that controls the contribution of each component . 

The PPO part ensures smooth policy updates and stable learning ,while the DQN part provides efficient 

exploration and value estimation . 

Together, they enable the agent to make energy-aware, low-latency task-offloading decisions in dynamic 5G 

environments .  

3.4 Additional Mathematical Formulation 

The hybrid policy value update can be written as follows to clearly illustrate the integration of PPO and DQN: 

𝑄(ℎ𝑦𝑏)(𝑠𝑡 , 𝑎𝑡) = λ ×   𝑄(𝐷𝑄𝑁) (𝑠𝑡 , 𝑎𝑡) + (1 − λ) × 𝜋(𝑃𝑃𝑂)(𝑎𝑡|𝑠𝑡) 

where 𝑄(𝐷𝑄𝑁) represents the value estimation from the DQN network, 

 𝜋(𝑃𝑃𝑂) is the probability of taking action at  𝑎𝑡 under the PPO policy, 

and λ∈[0,1] is a balancing factor controlling the contribution of each method. 

This unified formulation ensures that the policy learning process benefits simultaneously from PPO’s training 

stability and DQN’s efficient exploration capability, leading to improved convergence and robustness in 

dynamic 5G environment 

 

3.5 Reward Function Design 

The reward function in the proposed PPO-DQN framework is designed to balance three conflicting objectives in 

5G edge environments: 

(1) minimizing latency, 

(2) reducing energy consumption, and 

(3) maximizing system throughput. 

At each decision step t, the immediate reward R₁ is computed as follows:  

 

𝑅𝑡 = 𝑤1 (1 −
𝑇𝑡

𝑇𝑚𝑎𝑥

) + 𝑤2 (1 −
𝐸𝑡

𝐸𝑚𝑎𝑥

) + 𝑤3 (
Thrt

Thrmax

) 
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where: 

T: observed latency (processing + transmission delay) at time t, 

Et: energy consumption for the current task, 

Thr: system throughput achieved, 

Tmax, Emax, Thr max: normalization constants representing the maximum expected values for each metric, 

W1, W2, W3: weight coefficients that determine the relative importance of latency, energy, and throughput. 

This reward structure ensures that actions leading to lower latency and energy usage while achieving higher 

throughput yield higher rewards. 

By adjusting the weights W1, W2, W3, the framework can prioritize different service types-e.g., URLLC (ultra-

reliable low-latency communication) can emphasize latency reduction (w₁ > W₂, w3), while mMTC (massive 

machine-type communication) can focus on energy efficiency (W2 > W1, W₃). 

 

3.6 Integration with Learning Process 

The computed reward Rt is used jointly by both PPO and DQN components: 

PPO uses it to adjust the policy toward actions that yield higher expected cumulative rewards. 

DQN uses it to update the Q-values, improving its estimation of long-term returns. 

This design enables multi-objective optimization, allowing the proposed hybrid learning model to dynamically 

adapt to changing network conditions and QoS requirements. 

3.7 Algorithm Stability and Efficiency 

The hybrid PPO-DQN algorithm proposed in this study maintained the stability of learning during training, and 

its average reward increased gradually until it stabilized at a certain performance level. This result implies that the 

agent effectively learned an optimal policy for task offloading and energy management. Moreover, the complexity 

of our proposed algorithm grows linearly with respect to both devices and edge servers, indicating that the design 

is efficient in terms of implementation and computation for large-scale (5G ready) edge deployments. 

 

3.8 Matlab Implementation 

We implement and evaluate the proposed method in MATLAB by involving two toolboxes, Deep Learning 

Toolbox and Reinforcement Learning Toolbox. The simulation environment provides realistic and heterogeneous 

5G network with multiple base stations, edge servers and mobile nodes with various characteristics. 

The simulation settings are carefully chosen to reflect the real 5G network environment and cover the carrier 

frequencies from 3.5 GHz to 28 GHz, base station density between ten and fifty per km², device mobility models 

that follow acknowledged models of urban and suburban areas. 

4.Experimental Results and Analysis 

This section describes simulation scenarios, performance metrics and comparison against an R-L approach (PPO- 

DQN-based intelligent edge framework). All testing was performed in MATLAB using the Reinforcement 

Learning and Deep Learning toolboxes. The analysis focuses on three main goals – latency minimization, energy 

efficiency and system throughput under heterogeneous 5G network scenarios. Furthermore, the experiments also 

include sensitivity and convergence studies to demonstrate robustness and generality of our model 

 

Table1 simulation parameters 

Parameter Value Description 

Number of Devices 50 IoT and mobile terminals 

Number of Edge Servers 10 Distributed across 5 base stations 

Simulation Area 5 km × 5 km Urban macrocell coverage 

Carrier Frequency 3.5 GHz - 28 GHz Mid and mmWave 5G bands 

Task Arrival Rate Poisson (λ = 5-20 tasks/sec) Dynamic traffic intensity 

Device CPU Frequency 1-3 GHz Heterogeneous device capabilities 

Edge Server Capacity 10-50 GHz Variable computing resources 

4.1 Performance Metrics and Comparisons 

The performance of the proposed intelligent framework is compared with four baseline strategies, including RO, 

GLP, PRA and DQN only. Average task completion latency, energy consumption per device and system 

throughput are used as the evaluation criteria. 

4.2 Network Slice Performance Analysis 

consider the performance of the framework is considered for URLLC and mMTC network slices independently, 

to understand if it can meet different QoS requirements. The main goal for URLLC use cases is reducing latency 

at the same time as high reliability. 
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Table 2 Network Slice Performance Results 

 

4.3 Convergence Analysis and Generalization Performance 

The convergence performance of the PPO-based BLE is studied in 10,000 training episodes. The performance 

curve shows consistent slow convergence, with little variance indicating good robustness to different network 

conditions and task loads. 

It is obvious from the results that the recently proposed intelligent framework performs much better than baselines 

in terms of all corresponding criteria. The hybrid PPO-DQN algorithm works remarkably well, successfully 

addressing the exploration-exploitation trade-off and adjusting to network dynamics. 

4.4 Sensitivity Analysis 

To demonstrate the solidness and trustworthiness of our proposed framework, we conducted a thorough sensitivity 

analysis by sensibly changing a number of crucial parameters such as traffic arrival rate, density of edge servers 

and users' mobility speed in the system. This relationship was directly demonstrated by drawing their calculated 

obtained results, and the findings from this analysis clearly show that the framework remains able to perform 

consistently stable and robust even in some random and dynamic reality network situations. In particular, we 

observed that an increase of 50% in the rate of task arrivals (λ) led to only a modest increase of 6.3% in system 

latency incurred by the tasks and an escalation of just 4.1% in energy consumed. Such strong empirical evidence 

clearly indicates that the hybrid PPO-DQN algorithm is exceptionally good at dealing with dynamics of workload 

change, such that it can remain stable and effective across a wide range of different networks and scenarios 

 

5. Discussion 

5.1 Performance Analysis and Insights 

The experimental findings indicate that the proposed intelligent edge computing framework is effective in 

addressing task offloading and energy optimization problems in heterogeneous 5G wireless networks. The 

significant improvements under consideration of all performance criteria indicates the success of the design 

principles and algorithmic approaches chosen in this paper. 

In addition, the 26% energy savings for mMTC devices is also notable as it directly targets one of the most critical 

issues of IoT deployments. This enhancement is reflected in smart decisions considering item battery discharging 

time, task priority, and channel condition while deciding on offloading. 

The vast battery life extension of 34.7% is also beneficial with declining maintenance costs and improved system 

robustness in massive IoT deployments. The 4% decrease of the processing latency for URLLC applications is 

relatively small, however, it remains a huge milestone towards satisfying ultra-reliable application’s stringent 

latency. This improvement is important for tasks like autonomous driving, factory automation or augmented 

reality, in which delays of only milliseconds can have catastrophic consequences. 

5.2 Comparison with State-of-the-Art Approaches 

Our framework outperforms existing state-of-the-arts in various aspects. The hybrid PPO-DRQN method 

outperforms methods based on only one type of RL due to its ability to effectively combine both policy-based and 

value-based methods. In addition, the coupling of network slicing requirements with optimization is also a 

contribution that addresses practical 5G deployment scenarios. Its flexibility to accommodate diverse wireless 

settings makes the framework different from previous work, which is typically based on uniform network. This 

account for different device capabilities, channel conditions and mobility patterns enables a more accurate model 

of would-be real-world experience, eventually leading to better optimized results. 

5.3 Practical Implications and Applications 

The implications of the proposed framework for 5G network deployments are very tangible. Service providers can 

take advantage of the smart task offloading mechanism to improve service and decrease operational cost. The latter 

energy optimization features are particularly useful in the context of massive IoT deployments, where device 

autonomy (i.e., battery lifetime) is a major concern. 

Its modular nature ensures easy integration with already deployed 5G network infrastructure and management 

systems. This AI powered process makes its operation fully autonomous with less human intervention for lowering 

operational complexity and aiding in effectively scaling deployment across diverse environments. 

 

 

Network 

Slice 
Metric Baseline Proposed Improvement 

URLLC Avg Latency (ms) 8.5 8.16 4.0% 

URLLC Reliability (%) 99.5 99.9 0.4% 

mMTC Energy (mW) 45.2 33.4 26.1% 

mMTC Battery Life (hrs) 72 97 34.7% 
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5.4 Integration with Network Management Systems 

The proposed approach can be deployed in current 5G network management design through the corresponding 

interfaces to SDN controllers and NFV orchestrators. With shared API, the edge intelligence module can notify 

the SDN controller with transparent accelerated decisions of task offloading and resource allocation changes 

updates that enable dynamic reconfiguration of network slices in real-time. This integration process has the 

advantage that it guarantees the overlaying of this framework onto existing 3GPP infrastructures, so improving its 

feasibility in reality. 

5.5 Limitations and Challenges 

However, some limitations merit consideration, in spite of these encouraging findings. First, although the 

simulation setting is extensive, it might not include all aspects of a real 5G network such as hardware impairments, 

protocol overhead and security. Second, the complexity of our proposed algorithms might turn out to be 

problematic for real-time use in edge systems with limited resources. 

This framework’s performance is dependent on accurate channel state information and device capability estimates, 

which are often not easily available (especially if the environment is very dynamic). Second, such AI-based 

decision making on the edge also holds security and privacy issues which require a deeper investigation as well as 

protective measures. 

5.6 Future Research Directions 

There are several directions for future research based on the study. On the one hand, there is a great opportunity 

for incorporating FL techniques to support collaborative optimization in different edge computing domains while 

preserving data privacy. Second, the development of ultra-lightweight AI algorithms specialized for edge 

deployment might be an effective solution to alleviate worries on complexity. 

The use of blockchain to provide secure and transparent resource trading between the edge computing providers 

is also an interesting research direction. In addition, it can be considered of interest to further generalize the 

framework to cover 6G systems, such as terahertz and holographic communications, in order to increase its impact 

on future generations of wireless networks. At the end of the day, deployments of testbeds in real world and field 

evaluations will be key to understanding the actual effectiveness and operational challenges associated with our 

conceptual framework, which can then be 

 

Conclusion 

In this paper, we propose a new intelligent edge computing framework for 5G cellular networks which offers AI-

based task offloading and holistic energy optimizer in the context of heterogeneous wireless environment. Our 

approach is developed to cope with the main challenges of mobile edge computing through a deep reinforcement 

of learning-based solutions and multi-objective optimization methods. 

The main contributions of this paper lie in the design of a hybrid PPO-DQN algorithm that efficiently addresses 

multiple optimization goals, considering 5G network slicing constraints to make scheduling choices and covering 

heterogeneous wireless environmental features. 

Comprehensive MATLAB simulations demonstrate large performance improvements over the state-of-the-art 

schemes, achieving remarkable milestones such as a 26% reduction in energy consumption of mMTC devices, and 

a 4% latency decrease of URLLC applications at the cost of an up to 35% system throughput increase. 

The benefits of this framework are not limited to the development at academia, as they can also be transferred 

directly to network operators and service providers deploying edge computing applications for 5G. Its intelligent 

adaptation and energy optimization properties make it especially suitable for a wide range of applications, from 

ultra-reliable autonomous systems to massive IoT solutions. 
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