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Abstract:  

Explicit integration of stiffness matrix elements is generally applied in derivation of simple element matrices 

because of the tedious manual calculation needed when complex governing equations or interpolation function of 

high orders are involved. This work at derivation of element stiffness matrix of elastic axisymmetric circular plate 

with uniform thickness by explicit integration method and applying it in solving several problems under different 

types of loading and boundary conditions. Comparison between to finite element solutions and those obtained 

from corresponding theoretical equations showed good agreement. 

Keywords: axisymmetric circular plate, explicit integration, finite element method. 

 الملخص: 

تم تطبيق التكامل الصريح لعناصر مصفوفة الصلابة بشكل عام في اشتقاق مصفوفات العناصر البسيطة بسبب الحساب اليدوي 

هذا البحث إلى الممل المطلوب عندما يتعلق الأمر بمعادلات حاكمة معقدة أو دالة تتضمن حساب دالة ذات درجات عالية. يهدف  

استخلاص مصفوفة صلابة العناصر للوحة دائرية مرنة متناظرة المحور ذات سماكة موحدة بطريقة التكامل الصريح وتطبيقها 

في حل عدة مسائل تحت أنواع مختلفة من ظروف التحميل والحدود. أظهرت المقارنة بين حلول العناصر المحدودة وتلك التي 

 دلات النظرية المقابلة توافقًا جيداً.تم الحصول عليها من المعا 

 . طريقة العناصر المحدودة   الصريح، التكامل    المحوري، اللوح الدائري المتماثل  الكلمات المفتاحية: 
1. Introduction 

Theoretical investigations of deformation and stresses in circular and annular plates were carried out with those 

related to general forms of plates and shells. So, theoretical basis of axially symmetric circular and annular plates 

were presented in details in most of the well-known books discussing theory of plates and shells[1, 2, 3]. Many 

authors in finite element method considered  the axisymmetric circular plate problem as an extension or example 

of other one-dimensional elements. For example, bathe[4] referred to the finite element solution of the circular 

plate and shell problems as axisymmetric cases of the isoparametric beam solution by using a typical three-node 

element, while zienkiewicz  and Taylor [5] included the case of the axisymmetric circular plate as an example of 

axisymmetric shells. Reddy et al [6] presented unified finite element model that contained the classical theories of 

Euler Bernoulli, Timoshenko and simplified Reddy third-order beam. The axisymmetric bending of circular plates 

was included in the word as an extension of beam elements. In this work, elastic axisymmetric circular plate 

element with uniform thickness was developed by 

using bending moment equations and cubic Hermit interpolation functions. The resulting equations were integrated 

analytically to form the element stiffness matrix which used the solution many cases. Results were compared to 

those obtained by application of theoretical equations presented in related literature.  

2.  Finite Element Formulation 

      Generally, the derivation of the stiffness matrix is based on the governing equation of the deflection in 

axisymmetric bending. 
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For fourth order continuity, a cubic displacement function was selected 

𝑤(𝑟̅) = 𝑎1𝑟̅
3 + 𝑎2𝑟̅

2 + 𝑎3𝑟̅ + 𝑎4                                                       (2) 

Where the a'  are constant coefficients and 𝑟̅ is the local radial coordinate over the element as shown in figure 1. 

In global coordinates terms, it can be expressed by  

𝑟̅ = 𝑟 − 𝑟1                                                                              (3) 

Application of deflection and rotation boundary conditions in equation (2) at  𝑟̅ = 0 and 𝑟̅ = 𝐿 yields the values 

of the coefficients. Thus, the displacement function could be written as product of interpolation function and 

displacement vectors as following 

𝑤(𝑟̅) = [𝑁]{𝑑}                                                                         (4) 

where 

[𝑁] = [  𝑁1  𝑁2  𝑁3  𝑁4  ] , 𝑎𝑛𝑑  {𝑑} = {

𝑤1

∅1
𝑤2

∅2

} 

Where 𝑤1 and 𝑤2 are the nodal deflections in 𝑧 direction and ∅1and ∅2are the nodal rotations about the tangential 

direction to element, as shown in figure 1. The resulting Hermite cubic interpolation functions [7] can be written 

as following 

𝑁1[𝑟̅] =
1

𝐿3
(2𝑟̅3 − 3𝐿𝑟̅2 + 𝐿3)                                                              (5) 

𝑁2[𝑟̅] =
1

𝐿3
(𝐿𝑟̅3 − 2𝐿2𝑟̅2 + 𝐿3𝑟̅)                                                          (6) 

𝑁3[𝑟̅] =
1

𝐿3
(−2𝑟̅3 + 3𝐿𝑟̅2)                                                                    (7) 

                                    𝑁4[𝑟̅] =
1

𝐿3
(𝐿𝑟̅3 − 𝐿2𝑟̅2)                                                                        (8) 

Where 𝐿 is element length. 

 

Figure 1: Axisymmetric circular plate element with local forces, moments and resulting deflections and 

rotations, respectively. 
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The strain / displacement relation of axisymmetric plate bending can be written as [8] 

𝜀𝑟 = −𝑧
𝑑2𝑤

𝑑𝑟2
                                                                               (9) 

𝜀𝜃 = −𝑧
1

𝑟

𝑑𝑤

𝑑𝑟
                                                                           (10) 

Where 𝜀𝑟 is the radial strain and  𝜀𝜃 is the tangential strain. By putting the two equations into the form of 

multiplication of the proper derivatives of the interpolation functions and the displacement vector, we get 

{ 
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 } = −𝑧 
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{ 

𝑤1

∅1
𝑤2

∅2

 }                                (11) 

or 

{𝜀} = [𝐵]{𝑑}                                                                              (12) 

Hence, from equations (5) to (8) and (11), the strain-displacement matrix becomes 

[𝐵] = −
𝑧

𝐿3
 [ 

12𝑟̅ − 6𝐿  6𝐿𝑟̅ − 4𝐿2

1

𝑟
(6𝑟̅2 − 6𝐿𝑟̅)  

1

 𝑟
(3𝐿𝑟̅2 − 4𝐿2𝑟̅ + 𝐿3)

     
−12𝑟̅ + 6𝐿 6𝐿𝑟̅ − 2𝐿2

1

𝑟
(−6𝑟̅2 + 6𝐿𝑟̅)

1

𝑟
(3𝐿𝑟̅2 − 2𝐿2𝑟̅)

 ]  (13) 

The corresponding stresses can be found from elastic relations as [3] 

{ 
𝜎𝑟

𝜎𝜃
 } =

𝐸

1 − 𝑣2
 [
1 𝑣
𝑣 1

] { 
𝜀𝑟

𝜀𝜃
 }                                                           (14) 

or 

{𝜎} = [𝐷]{𝜀}                                                                                (15) 

Where [𝐷] is the constitutive matrix in case of plate bending. 

The total potential energy for axisymmetric plate bending is: 

      𝜋𝑝 = 𝑈 + Ω                                                                        (16) 

Where 𝑈 is the element strain energy: 

𝑈 = ∭
1

2
𝜎𝜀𝑑𝑣

1

𝑣

                                                                        (17) 

and  Ω is the potential energy distributed load over element length and applied nodal concentrated forces and 

moments: 

Ω = −∬ 𝑝𝑤𝑑𝐴
1

𝐴

− ∑𝑝𝑖𝑤𝑖

2

𝑖=1

− ∑𝑀𝑖∅𝑖

2

𝑖=1

                                                       (18) 

By writing equations (17) and (18) in terms of axisymmetric plate quantities and limits, equations (16) becomes 

𝜋𝑝 = ∫   ∫    ∫   
1

2
{𝜎}𝑇{𝜀}𝑟𝑑𝜃𝑑𝑧𝑑𝑟

2𝜋

0 

𝑡
2

−
𝑡
2

𝑟2

𝑟1
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            −∫ ∫ 𝑝𝑤(𝑟)𝑟𝑑𝜃𝑑𝑟
2𝜋

0

− 2𝜋 ∑(𝑃𝑖𝑤𝑖 + 𝑀𝑖∅𝑖)𝑟𝑖

2

𝑖=1

𝑟2

𝑟1

          (19) 

Now, substitution equations (15),(12) and (4) into (19), performing simple integrations along circumference (𝑑𝜃) 

and differentiation with respect to displacement vector elements with equating to zero for minimum potential 

energy yields  

2𝜋 ∫   ∫   [𝐵]𝑇[𝐷][𝐵][𝑑]𝑟𝑑𝑧𝑑𝑟

𝑡
2

−
𝑡
2

𝑟2

𝑟1

− 2𝜋𝑝 ∫   [𝑁]𝑇𝑟𝑑𝑟
𝑟2

𝑟1

− 2𝜋{𝑃̅} = 0              (20) 

Where 

{𝑃̅} = {

𝑃1𝑤1

𝑀1∅1

𝑃2𝑤2

𝑀2∅2

} 

The element stiffness matrix can be easily obtained from equation (20) and written as 

[𝑘] = 2𝜋 ∫   ∫   [𝐵]𝑇[𝐷][𝐵]𝑟𝑑𝑧𝑑𝑟                                              (21)

𝑡
2

−
𝑡
2

𝑟2

𝑟1

 

 

In order to complete the derivation, the strain-displacement matrix [𝐵] of equation (13) should be expressed in 

terms of global 𝑟-coordinates by using equation (3) to perform the integration of equation (21). To simplify matrix 

multiplication, the equations, strain and constitutive matrices can be rewritten as  

[𝐵] = −
𝑧

𝐿3
[𝐵̅],        𝑎𝑛𝑑            [𝐷] =

𝐸

1 − 𝑣2
[𝐷̅] 

and by performing integration across element thickness, the stiffness matrix becomes in the following form 

[𝑘] =
2𝜋𝐷𝑓

𝐿6
∫ [𝐵̅]𝑇[𝐷̅][𝐵̅]𝑟𝑑𝑟

𝑟2

𝑟1

                                                      (22) 

Where 𝐷𝑓 is the flexural rigidity of the plate: 

𝐷𝑓 =
𝐸𝑡3

12(1 − 𝑣2)
                                                                  (23) 

     The final step in the stiffness matrix derivation is evaluation of equation (22). This can be performed by one of 

three methods [9]: 

1. Numerical integration 

2. Explicit multiplication of matrices then term-by-term integration 

3. Evaluate [𝐵] at middle point instead of the entire element length instead of integration. 

In this work, the explicit matrix multiplication is performed the elements of resulting 4 × 4 matrix are integrated 

manually from 𝑟1 𝑡𝑜 𝑟2 . The resulting elements of stiffness matrix are as following  

𝑘11 =
2𝜋𝐷

𝐿6
{9(5 + 4𝑣)∆𝑟4 − 72(𝐿 + 2𝑟1)(1 + 𝑣)∆𝑟3 

+36[𝐿2(1 + 𝑣) + 𝑟1(𝐿 + 𝑟1)(5 + 6𝑣)]∆𝑟2 

https://ljcas.ly/index.php/ljcas/index
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−72𝑟1(𝐿 + 2𝑟1)(𝐿 + 𝑟1)(1 + 𝑣)∆𝑟 + [6𝑟1(𝐿 + 𝑟1)]
2∆ ln 𝑟}             (24) 

𝑘12 = 𝑘21 =
2𝜋𝐷

𝐿6
{ 
9

2
𝐿(5 + 4𝑣)∆𝑟4 − 6𝐿(7𝐿 + 12𝑟1)(1 + 𝑣)∆𝑟3              

+ 3𝐿[𝑟1(7𝐿 + 6𝑟1)(5 + 6𝑣) + 𝐿2(9 + 10𝑣)]∆𝑟2                                 

− 6𝐿(𝐿 + 𝑟1)[𝐿
2 + 3𝑟1(3𝐿 + 4𝑟1)](1 + 𝑣)∆𝑟

+ 6𝐿𝑟1(𝐿 + 3𝑟1)(𝐿 + 𝑟1)
2∆ ln 𝑟}              (25) 

𝑘13 = 𝑘31 = −𝑘11                                                            (26) 

𝑘14 = 𝑘41 =
2𝜋𝐷

𝐿6
{ 
9

2
𝐿(5 + 4𝑣)∆𝑟4 − 6𝐿(5𝐿 + 12𝑟1)(1 + 𝑣)∆𝑟3 

+3𝐿[𝑟1(5𝐿 + 6𝑟1)(5 + 6𝑣) + 4𝐿2(1 + 𝑣)]∆𝑟2 

                                                      −6𝐿𝑟1[4𝐿2 + 3𝑟1(5𝐿 + 4𝑟1)](1 + 𝑣)∆𝑟 

                                        +6𝐿𝑟1
2(2𝐿 + 3𝑟1)(𝐿 + 𝑟1)∆ ln 𝑟}          (27) 

𝑘22 =
2𝜋𝐷

𝐿6
{ 
9

4
𝐿2(5 + 4𝑣)∆𝑟4 − 12𝐿2(2𝐿 + 3𝑟1)(1 + 𝑣)∆𝑟3 

+𝐿2[3𝑟1(4𝐿 + 3𝑟1)(5 + 6𝑣) + 𝐿2(19 + 22𝑣)]∆𝑟2 

 −4𝐿2(2𝐿 + 3𝑟1)(𝐿 + 3𝑟1)(𝐿 + 𝑟1)(1 + 𝑣)∆𝑟 

         +𝐿2[𝐿4 + 8𝐿3𝑟1 + 22𝐿2𝑟1
2 + 24𝐿𝑟1

3 + 9𝑟1
4]∆ ln 𝑟}              (28) 

𝑘23 = 𝑘32 = −𝑘12                                                   (29) 

𝑘24 = 𝑘42 =
2𝜋𝐷

𝐿6
{ 
9

4
𝐿2(5 + 4𝑣)∆𝑟4 − 18𝐿2(𝐿 + 2𝑟1)(1 + 𝑣)∆𝑟3 

+ 
1

2
𝐿2[18𝑟1(𝐿 + 𝑟1)(5 + 6𝑣) + 𝐿2(19 + 22𝑣)]∆𝑟2 

  −2𝐿2(𝐿 + 2𝑟1)[𝐿
2 + 9𝑟1(𝐿 + 𝑟1)](1 + 𝑣)∆𝑟 

                 +𝐿2𝑟1(2𝐿 + 3𝑟1)(𝐿 + 3𝑟1)(𝐿 + 𝑟1)∆ ln 𝑟}          (30) 

𝑘33 = 𝑘11                                                                    (31) 

𝑘34 = 𝑘43 = −𝑘14                                                            (32) 

𝑘44 =
2𝜋𝐷

𝐿6
{ 
9

4
𝐿2(5 + 4𝑣)∆𝑟4 − 12𝐿2(2𝐿 + 3𝑟1)(1 + 𝑣)∆𝑟3 

+ 
1

2
𝐿2[6𝑟1(2𝐿 + 3𝑟1)(5 + 6𝑣) + 8𝐿2(1 + 𝑣)]∆𝑟2 

                              −4𝐿2𝑟1(2𝐿 + 3𝑟1)(𝐿 + 3𝑟1)(1 + 𝑣)∆𝑟 + [𝐿𝑟1(2𝐿 + 3𝑟1)]
2∆ ln 𝑟}         (33) 

Where  ∆𝑟𝑛 = (𝑟2
𝑛 − 𝑟1

𝑛) and ∆ ln 𝑟 = 𝑙𝑛𝑟2 − 𝑙𝑛𝑟1. 

Finally, to determine the forces applied on the element, the lode terms of equation (20) should be defined. While 

the concentrated loads act on nodes directly, the distributed load over the element should be interpolation to from 

nodal forces vector , 𝑓, by the integral . 
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{𝑓} = 2𝜋𝑝 ∫ [𝑁]𝑇
𝑟2

𝑟1

𝑟𝑑𝑟                                                                    (34) 

So, integration of the interpolation functions yields the following vector elements 

𝑓1 = 2𝜋𝑝{ 
2

5
∆𝑟5 −

3

4
(𝐿 + 2𝑟1)∆𝑟4 + 2𝑟1(𝐿 + 𝑟1)∆𝑟3 +

1

2
(𝐿3 − 3𝐿𝑟1

2 − 2𝑟1
3)∆𝑟2 }                  (35) 

𝑚1 = 2𝜋𝑝{ 
1

5
𝐿∆𝑟5 −

1

4
𝐿(2𝐿 + 3𝑟1)∆𝑟4 +

1

3
(𝐿 + 3𝑟1)(𝐿 + 𝑟1)∆𝑟3 −

1

2
𝐿𝑟1(𝐿 + 𝑟1)

2∆𝑟2 }         (36) 

𝑓2 = 2𝜋𝑝{− 
2

5
∆𝑟5 +

3

4
(𝐿 + 2𝑟1)∆𝑟4 − 2𝑟1(𝐿 + 𝑟1)∆𝑟3 +

1

2
𝑟1

2(3𝐿 − 2𝑟1)∆𝑟2 }                          (37) 

𝑚2 = 2𝜋𝑝{ 
1

5
𝐿∆𝑟5 −

1

4
𝐿(𝐿 + 3𝑟1)∆𝑟4 +

1

3
𝐿𝑟1(2𝐿 + 3𝑟1)(𝐿 + 𝑟1)∆𝑟3 −

1

2
𝐿𝑟1

2(𝐿 + 𝑟1)
2∆𝑟2 }  (38) 

Another approach in the derivation of the stiffness matrix is by using equations of radial and tangential bending 

moments in axisymmetric plate [1, 3] and the same results are obtained. In this work, a procedure-oriented C++ 

code, named axiplate, was programmed to utilized the derived stiffness matrix and nodal force vector equations. 

The global stiffness matrix and force vector were assembled using superposition method [9], and system was 

solved by a Gauss-elimination routine. 

3. Results  

To examine the validity to results obtained by the derived stiffness matrix, several cases were solved and results 

are compared with those obtained corresponding theoretical equations from reference [3]. The common data of the 

cases solved in this work was as following  

Radius                           1.0 𝑚 

Thickness                      0.01 𝑚 

                 modulus of elasticity    200 × 109  𝑁 𝑚2⁄  

                applied load                −10.0 𝑁 𝑜𝑟 𝑁 𝑚⁄  

                                                         poison's ratio                 0.3 

The applied load could be uniformly distributed load or concentrated force. 

3.1. Uniformly distributed load 

Figure (2) and (3) show the distribution of deflection and stresses along the radius of a circular plate with rigidly 

clamped edge. 

Figure (4) and (5) show the solutions of a circular plate with simply supported edge. 

3.2. Central concentrated force   

Figure (6) and (7) show the solutions of a circular plate with clamped edge and figure (8) and (9) show those of 

simply supported plate. 

3.3. Variation of uniformly distributed and concentrated loads over radial distance 

The program was applied when loading position in varying from center to edge [3]. A 8-element  model was used 

with the general date mentioned above. In figure (10.1), (10.2) and (11), the behavior of deflection at the center 

and radial stresses at the center and the edge of a clamped plate under distributed and concentrated loads, 

respectively. Figure (12) and (13) show the deflection and the radial stress at the plate center under distributed and 

concentrated loads when edge is simply supported. 
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Figure 2: Deflections, 𝑤 , along the radius of a circular plate with clamped edge under uniformly distributed 

load. 

4. Discussion 

Generally, a very good agreement between the finite element and the theoretical solution is seen and convergence 

was obtained with small number of elements. Distributed load cases converged more rapidly to exact solutions 

than those under a central concentrated force. This was due to the effect of application of the force on a point 

where 𝑟 = 0 on the formation of finite element equations system. Theoretically, this is noticed at application of 

the force over a tiny area at center, and for this reason the equivalent radius was defined [3] to avoid zero radius 

substitution in logarithmic terms existing in the most axisymmetric plate equations. 

At first glance, the explicit multiplication of matrices in equation (22) element-by-element then integration of 

resulting elements of the stiffness matrix might seem to the tedious and error prone process when performed 

manually, but three main advantages were obtained:(1) the accuracy of analytic integration in comparison to other 

methods, (2) the minimal programming effort and (3) the quicker run of the program. For more complicated 2- 

and 3- dimensional elements, commercial packages, such as MATLAB, supply symbolic math tools that can be 

utilized in matrix multiplication and integration. 

 

Figure 3: Stresses, 𝜎𝑟 and 𝜎𝜃, along the radius of a circular plate with clamped edge under uniformly distributed 

load. 
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Figure 4: Deflections, w, along the radius of a circular plate with simply supported edge under 

uniformly distributed load. 

5. Conclusions 

The obtained stiffness matrix of axisymmetric circular plates yielded remarkable convergence to theoretical 

solution in the cases analyzed in this work. The simplicity of the computer code and speed of run are the main 

advantages of the used derivation method. The code can be executed without any modifications to annular plates 

of uniform thickness. 

 

Figure 5: Stresses, 𝜎𝑟 and 𝜃𝑟 ,along the radius of a circular plate with simply supported edge under uniformly 

distributed load. 
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Figure 6: Deflections, w, along the radius of a circular plate with clamped edge under concentrated force at 

center. 

 

Figure 7: Stresses, 𝜎𝑟 and 𝜃𝑟 ,along the radius of a circular plate with clamped edge under concentrated force at 

center. 

 

Figure 8: Deflections, w, along the radius of a circular plate with simply supported edge under concentrated 

force at center. 
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Figure 9: Stresses, 𝜎𝑟 and 𝜎𝜃 ,along the radius of a circular plate with simply supported edge under concentrated 

force at center. 

 

Figure 10.1: Center deflection 𝑤, at center along the radius  of a circular plate with clamped plate under varying 

distributed load. 

 

Figure 10.2: Center deflection 𝑤, at center along the radius  and edge radial stresses, 𝜎𝑟 ,in a clamped plate 

under varying distributed load. 
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Figure 11: Radial stress 𝜎𝑟  along the radius of a circular plate with simply supported plate under varying 

distributed load. 

 

Figure 12: Center deflection 𝑤,and along the radius of a circular plate with simply supported plate under 

varying  distributed load. 

 

Figure 13: Center deflection 𝑤,and along the radius with a radial stress 𝜎𝑟   in a simply supported plate under 

varying distributed force. 
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