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Abstract:

Explicit integration of stiffness matrix elements is generally applied in derivation of simple element matrices
because of the tedious manual calculation needed when complex governing equations or interpolation function of
high orders are involved. This work at derivation of element stiffness matrix of elastic axisymmetric circular plate
with uniform thickness by explicit integration method and applying it in solving several problems under different
types of loading and boundary conditions. Comparison between to finite element solutions and those obtained
from corresponding theoretical equations showed good agreement.
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1. Introduction

Theoretical investigations of deformation and stresses in circular and annular plates were carried out with those
related to general forms of plates and shells. So, theoretical basis of axially symmetric circular and annular plates
were presented in details in most of the well-known books discussing theory of plates and shells[1, 2, 3]. Many
authors in finite element method considered the axisymmetric circular plate problem as an extension or example
of other one-dimensional elements. For example, bathe[4] referred to the finite element solution of the circular
plate and shell problems as axisymmetric cases of the isoparametric beam solution by using a typical three-node
element, while zienkiewicz and Taylor [5] included the case of the axisymmetric circular plate as an example of
axisymmetric shells. Reddy et al [6] presented unified finite element model that contained the classical theories of
Euler Bernoulli, Timoshenko and simplified Reddy third-order beam. The axisymmetric bending of circular plates
was included in the word as an extension of beam elements. In this work, elastic axisymmetric circular plate
element with uniform thickness was developed by

using bending moment equations and cubic Hermit interpolation functions. The resulting equations were integrated
analytically to form the element stiffness matrix which used the solution many cases. Results were compared to
those obtained by application of theoretical equations presented in related literature.

2. Finite Element Formulation
Generally, the derivation of the stiffness matrix is based on the governing equation of the deflection in
axisymmetric bending.
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Ty = d2+1d d2w+1dw P L
w= dr2 rdr)\dr? rdr) D 1)

For fourth order continuity, a cubic displacement function was selected
w(F) = a;73 + a,72 + as7 + ay )

Where the a' are constant coefficients and 7 is the local radial coordinate over the element as shown in figure 1.
In global coordinates terms, it can be expressed by

r=r—-n 3)

Application of deflection and rotation boundary conditions in equation (2) at 7 = 0 and 7 = L yields the values
of the coefficients. Thus, the displacement function could be written as product of interpolation function and
displacement vectors as following

w(r) = [N]{d} 4)
where
141
[NI=[ N, N, Ny N, ], and {d} = f,;
9,

Where w; and w, are the nodal deflections in z direction and @, and @, are the nodal rotations about the tangential
direction to element, as shown in figure 1. The resulting Hermite cubic interpolation functions [7] can be written
as following

1
N [F] = L—3(2f3 — 3L + L?) (5)
N,[F] = L1—3(Lf3 — 21272 + I137) (6)
1
Nq[7] = L—S(—2f3 + 3L7?) 7
NJ[F] = 5 (0 - 127%) ®)

Where L is element length.
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Figure 1: Axisymmetric circular plate element with local forces, moments and resulting deflections and
rotations, respectively.

Libyan Journal of Contemporary Academic Studies
25 Website: https://ljcas.ly/index.php/ljcas/index

Copyright: © 2026 by the authors. Submitted for possible open access publication under the terms and conditions of the
Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).



https://ljcas.ly/index.php/ljcas/index

(Libyan Journal of Contemporary Academic Studies) 5 salrall 4aaas¥) cilaf jall 4l ddaal)
LICAS, eISSN: 5970-3005
Volume 4, Issue 1, 2026, Pages: 24-35

The strain / displacement relation of axisymmetric plate bending can be written as [§8]

d*w
& = _ZW (9)
_ 1dw 10

Where ¢, is the radial strain and &g is the tangential strain. By putting the two equations into the form of
multiplication of the proper derivatives of the interpolation functions and the displacement vector, we get

dle d2N2 d2N3 d2N4 W1

&) _ dr? dr? dr? dr? @,
{89 } 7% 14N, 1dN, 1dN, 1dN, |) W2 a1
r dr rdr rdr r dr P
or
{e} = [Bl{d} (12)

Hence, from equations (5) to (8) and (11), the strain-displacement matrix becomes

z 127 — 6L 6L7 — 4L* —127 + 6L 6L7 — 217

Bl=—-=11 1 1 1
[Bl=-1 —(67° —6L7) — (3L — 4T +1%) (=67 +6L7) — (3L - 2L°7)

(13)

The corresponding stresses can be found from elastic relations as [3]

E
{ot=r=n [ 1{a) (s

or
{0} = [D]{e} (15)
Where [D] is the constitutive matrix in case of plate bending.
The total potential energy for axisymmetric plate bending is:
T, =U+Q (16)

Where U is the element strain energy:

U=fff1%asdv a7

and ( is the potential energy distributed load over element length and applied nodal concentrated forces and
moments:

1 2 2
0=- ff pwdA — Zpiwi — Z M;®; (18)
A i=1 i=1

By writing equations (17) and (18) in terms of axisymmetric plate quantities and limits, equations (16) becomes

t
T2 5 21 1
r, = J f ’ J {0} {e}rdodzdr
T -3 0
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1

2
T2 2T
—f f pw(r)rd@dr — ZnZ(Piwi + M;0)r; (19)
T 0 i=1

Now, substitution equations (15),(12) and (4) into (19), performing simple integrations along circumference (d6)
and differentiation with respect to displacement vector elements with equating to zero for minimum potential
energy yields

2 frz J-i [B1T[D][B][d]rdzdr — 2mp frz [N]Trdr — 2n{P} =0 20)

t
2 n
Where

Pyw,
M9,
Pw,
M, 9,

{P} =
The element stiffness matrix can be easily obtained from equation (20) and written as

t
[k] = 2 f ’ f_ 2£ [B]”[D][B]rdzdr 1)

In order to complete the derivation, the strain-displacement matrix [B] of equation (13) should be expressed in
terms of global r-coordinates by using equation (3) to perform the integration of equation (21). To simplify matrix
multiplication, the equations, strain and constitutive matrices can be rewritten as

[B] =—--I[B], and (D]

[D]

1 -2
and by performing integration across element thickness, the stiffness matrix becomes in the following form

2m

De (™2 _
K =5 [ BIDBIrar (22)

Where Dy is the flexural rigidity of the plate:

Et3

br=na—w (23

The final step in the stiffness matrix derivation is evaluation of equation (22). This can be performed by one of
three methods [9]:

1. Numerical integration
2. Explicit multiplication of matrices then term-by-term integration
3. Evaluate [B] at middle point instead of the entire element length instead of integration.

In this work, the explicit matrix multiplication is performed the elements of resulting 4 X 4 matrix are integrated
manually from 7; to 1, . The resulting elements of stiffness matrix are as following

2nD
ky, = L_6{9(5 + 4v)Ar* — 72(L + 2r,) (1 + v)Ar3

+36[L*(1 +v) + r;(L + 1) (5 + 6v)]Ar?
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=721, (L 4 2r)(L + ) (1 + v)Ar + [6r,(L + r1)]?Aln7r} (24)

27D 9 \ ,

+ 3L[ry (7L + 67,)(5 + 6v) + L?(9 + 10v)]Ar?
—6L(L +1)[L? +3r,(BL + 41)](1 + v)Ar
+ 6Lr; (L + 3r)(L +1;)?Aln7r} (25)

ki3 = kg1 = —kqy (26)
2nD 9

+3L[ry (5L + 6717)(5 + 6v) + 4L%(1 + v)]Ar?
—6Lr;[4L% + 31, (5L + 41)](1 + v)Ar
+6L1;2(2L + 31)(L + r)Aln1} 27

2nD 9
ko, = L—G{ZLZ(S + 4v)Ar* — 1212(2L + 3r,) (1 + v)Ar3

+L%[3r, (4L + 317) (5 + 6v) + L2(19 + 22v)]Ar?
—4L*(2L + 3r) (L + 3r)(L + 1) (1 + v)Ar
+L2[L* + 8131, + 22L%1,% + 24Lr 3 + 91, *]AIn 7} (28)
koz = k3y = —kq; (29)

2D 9 4 5 3
k24, = k42 = ?{ZL (5 + 4U)AT — 18L (L + 2T1)(1 + 'U)AT

1
+ EL2[187‘1(L +7,)(5 + 6v) + L2(19 + 22v)]Ar?

—2L*(L + 2r)[L* + 91y (L + )] (1 + v)Ar
+L2r, (2L + 3r)(L + 3r)(L + r,)AIn7} (30)
k3s = kiq (31

b3y = kaz = —kq4 (32)

2nD 9 4 2 3
kay =L_6{ZL (5 + 4v)Ar* — 12L° (2L + 3r)(1 + v)Ar

1
+ ELZ [6r1 (2L + 31,)(5 + 6v) + 8L2(1 + v)]Ar?

—41%r; (2L + 3r)(L + 3r)(1 + v)Ar + [Lr; 2L + 317)]?Aln 7} (33)
Where Ar™ = (r, — ™) and Alnr = Inr, — Inr;.

Finally, to determine the forces applied on the element, the lode terms of equation (20) should be defined. While
the concentrated loads act on nodes directly, the distributed load over the element should be interpolation to from

nodal forces vector , f, by the integral .
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() = 2mp f VYT rdr 34)

L&Y

So, integration of the interpolation functions yields the following vector elements

2 3 1
fi = 2mp{ §Ar5 ~32 (L + 2r)Ar* + 2 (L + r)Ar3 + > (L3 — 3L 2 = 2r3)Ar? } (35)
1 5 1 4 1 3 1 2 2
my = 2np{ ELAr — ZL(ZL + 3r)Ar* + 3 (L +3r)(L + r)Ars — ELH(L +1)°Ars } (36)
2 3 1
fo = 2np{— gArs + y (L + 2r)Ar* = 2ry(L + r)Ar3 + §r12(3L —2r)Ar?} (37)

1 5 1 4 1 3 1 2 2 2
m, = 2np{§LAr - ZL(L + 3r)Ar* + §Lr1(2L +3r)(L + r)Ard — ELr1 (L +7r)*Ar“} (38)

Another approach in the derivation of the stiffness matrix is by using equations of radial and tangential bending
moments in axisymmetric plate [1, 3] and the same results are obtained. In this work, a procedure-oriented C++
code, named axiplate, was programmed to utilized the derived stiffness matrix and nodal force vector equations.
The global stiffness matrix and force vector were assembled using superposition method [9], and system was
solved by a Gauss-elimination routine.

3. Results

To examine the validity to results obtained by the derived stiffness matrix, several cases were solved and results
are compared with those obtained corresponding theoretical equations from reference [3]. The common data of the
cases solved in this work was as following

Radius 1.0m

Thickness 0.01m

modulus of elasticity 200 x 10° N / m?

applied load —10.0 N or N/m
poison's ratio 0.3

The applied load could be uniformly distributed load or concentrated force.

3.1. Uniformly distributed load
Figure (2) and (3) show the distribution of deflection and stresses along the radius of a circular plate with rigidly
clamped edge.
Figure (4) and (5) show the solutions of a circular plate with simply supported edge.

3.2, Central concentrated force
Figure (6) and (7) show the solutions of a circular plate with clamped edge and figure (8) and (9) show those of
simply supported plate.

3.3. Variation of uniformly distributed and concentrated loads over radial distance
The program was applied when loading position in varying from center to edge [3]. A 8-element model was used
with the general date mentioned above. In figure (10.1), (10.2) and (11), the behavior of deflection at the center
and radial stresses at the center and the edge of a clamped plate under distributed and concentrated loads,
respectively. Figure (12) and (13) show the deflection and the radial stress at the plate center under distributed and
concentrated loads when edge is simply supported.
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Figure 2: Deflections, w, along the radius of a circular plate with clamped edge under uniformly distributed
load.

4. Discussion

Generally, a very good agreement between the finite element and the theoretical solution is seen and convergence
was obtained with small number of elements. Distributed load cases converged more rapidly to exact solutions
than those under a central concentrated force. This was due to the effect of application of the force on a point
where r = 0 on the formation of finite element equations system. Theoretically, this is noticed at application of
the force over a tiny area at center, and for this reason the equivalent radius was defined [3] to avoid zero radius
substitution in logarithmic terms existing in the most axisymmetric plate equations.

At first glance, the explicit multiplication of matrices in equation (22) element-by-element then integration of
resulting elements of the stiffness matrix might seem to the tedious and error prone process when performed
manually, but three main advantages were obtained:(1) the accuracy of analytic integration in comparison to other
methods, (2) the minimal programming effort and (3) the quicker run of the program. For more complicated 2-
and 3- dimensional elements, commercial packages, such as MATLAB, supply symbolic math tools that can be
utilized in matrix multiplication and integration.
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Figure 3: Stresses, o, and oy, along the radius of a circular plate with clamped edge under uniformly distributed

load.
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Figure 4: Deflections, w, along the radius of a circular plate with simply supported edge under

uniformly distributed load.

5. Conclusions

The obtained stiffness matrix of axisymmetric circular plates yielded remarkable convergence to theoretical
solution in the cases analyzed in this work. The simplicity of the computer code and speed of run are the main
advantages of the used derivation method. The code can be executed without any modifications to annular plates
of uniform thickness.
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BT
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0 _-'Q:P"""P”/% | | | | | | 0

0 01 02 03 04 05 06 07 08 09 1
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Figure 5: Stresses, o, and 0, ,along the radius of a circular plate with simply supported edge under uniformly
distributed load.
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Figure 6: Deflections, w, along the radius of a circular plate with clamped edge under concentrated force at

center.
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Figure 7: Stresses, o, and 6, ,along the radius of a circular plate with clamped edge under concentrated force at
center.
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Figure 8: Deflections, w, along the radius of a circular plate with simply supported edge under concentrated
force at center.
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Figure 9: Stresses, g, and 0y ,along the radius of a circular plate with simply supported edge under concentrated
force at center.
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Figure 10.1: Center deflection w, at center along the radius of a circular plate with clamped plate under varying

distributed load.
1 -1 1 1
08 08 08
21 | ]
0.8 0.8 0.8
E 07 E-37 07 & 07
© © ]
0 086 Wl 086 a 086
] ] P
M 05 * 05 i 05
[~ c o
=l 2.5t -
B 04 i 04 o 04
2 2 a
T 0.3 T gl | 03 = 0.3
a o6 b3
02 02 02
=TI
0.1 v [ 0.1 0.1
0 -8 : 0 i
-1 0 1
Diameter {m) Diametar fm) Diameter {m)

Figure 10.2: Center deflection w, at center along the radius and edge radial stresses, g, ,in a clamped plate
under varying distributed load.
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Figure 11: Radial stress o, along the radius of a circular plate with simply supported plate under varying
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Figure 12: Center deflection w,and along the radius of a circular plate with simply supported plate under

varying distributed load.
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Figure 13: Center deflection w,and along the radius with a radial stress o, in a simply supported plate under
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varying distributed force.
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